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Abstract

Internal symmetries for the Drucker–Prager material model and numerical methods based on them are investigated

here. We first convert the non-linear constitutive equations to a Lie type system _X ¼ AðX; tÞX, where A 2 slð5; 2;RÞ is a
Lie algebra of the special orthochronous pseudo-linear group SLð5; 2;RÞ. The underlying space of Drucker–Prager
model in the plastic phase is a pseudo-sphere in the pseudo-Riemann manifold, which is locally a pseudo-Euclidean

space E75;2, and whose metric tensor is indefinite having signature (5,2) and also depends on the temporal component.

Then, we split the Drucker–Prager yield condition into two ‘‘sub-yield’’ conditions, which together with two integrating

factors idea led us to derive two Lie type systems in the product space M5þ1 �M1þ1. The Lie algebra is the direct sum

soð5; 1Þ � soð1; 1Þ, and the symmetry group is thus SOoð5; 1Þ � SOoð1; 1Þ. These results are essential from computational
aspect. Based on these symmetry groups exponential mappings are developed, which update stress points exactly on the

yield surface at every time increment without any iteration. As an example, the results calculated by using the two

different group preserving schemes are compared to that calculated by the Runge–Kutta scheme together with the

Newton–Raphson iterative solution of a non-linear algebraic equation which enforcing the consistency condition.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to its extreme versatility and accuracy in modeling material behavior, plasticity theory has gained

widespread use in numerical simulations of practical geotechnical engineering problems. A wide range of

geotechnical materials including rock, concrete, soil and porous metals display pressure-dependent plastic
yielding behavior and inelastic volumetric dilatancy. Building upon the pioneering works of Drucker and

Prager (1952) on soil plasticity, the modern trend has been toward the development of more and more

elaborate and complicated elastoplastic constitutive models which resemble the behavior of geomaterials

more closely. Also, considerable efforts were devoted to the study of deformation fields and crack growth
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characteristics in pressure-sensitive materials, for example, Li and Pan (1990); Miao and Drugan (1993);

Borja (2000); Wells and Sluys (2001); Bousshine et al. (2001); Borja and Regueiro (2001), and references

therein.

The numerical solution of elastoplastic boundary-value problems in solid mechanics is based on an
iterative solution of the discretized momentum balance equations. Typically, for every loading time step

with a converged configuration at step ‘, solution involves the following steps (Simo and Hughes, 1998): (1)
The discretized momentum equations are used to compute a new configuration for step ‘þ 1 via an
incremental motion which is used to compute at every stress point incremental strains De. (2) At every stress

point, for the given incremental strains De, new values of state variables rð‘þ 1Þ are obtained by inte-
gration of the local constitutive equations. (3) From the new computed stresses, balance of momentum is

checked and if violated iterations are performed by returning to step (1).

For most computational architectures currently in use, steps (1) and (3) are carried out by finite-element/
finite-difference procedures. In this paper attention is focused on step (2) for the elastoplastic constitutive

equations with the Drucker–Prager yielding criterion and associated plastic flow rule. This step is a central

problem in computational plasticity as it corresponds to the main role played by the constitutive equations.

However, due to non-linear nature of the model equations in plasticity, the difficulties for developing exact

method to solve them are involved in this issue. For its great consumption of computational time, and the

efficiency and accuracy of the calculations of mechanical problems being strongly influenced by the effi-

ciency and accuracy of constitutive-equations solving schemes, it has drawn much attention over the past

several decades and has stimulated many researches in this issue to develop accurate and economic algo-
rithms; see, for example, Nagtegaal et al. (1974); Hughes (1984); Ortiz and Popov (1985); Simo and Taylor

(1985); Loret and Prevost (1986); Hong and Liou (1993); Simo and Hughes (1998); Hong and Liu (1999a,

2000); B€uttner and Simeon (2002); Auricchio and Beir~ao da Veiga, 2003; Hjiaj et al. (2003); Mukherjee and
Liu (2003) and Liu (2001a, 2004a,b) among many others.

A numerical scheme which preserves symmetry and utilizes the invariance property from one time step to

the next one or few steps will be more capable of capturing key features during elastoplastic deformation

and have long-term stability and much improved efficiency and accuracy. Therefore the issue of internal

symmetries in the constitutive laws of plasticity is not only important in its own right, but will also find
applications to the computational plasticity.

It deserves to noting recent attempt to present a unified theoretically and computationally convenient

treatment of the backward-difference scheme for the integration of complex constitutive models; see, e.g.,

Cocchetti and Perego (2003). On the other hand, some recent attempts to propose the integration schemes

based on the internal symmetries of simple elastoplastic constitutive models also deserve a further attention.

A novel formulation for elastoplasticity has been recently developed by Hong and Liu (1999a,b, 2000); Liu

and Hong (2001); Mukherjee and Liu (2003), and Liu (2001a, 2004a,b). These authors have explored the

internal symmetry groups of the constitutive models for perfect elastoplasticity with or without considering
large deformation, for bilinear elastoplasticity, for visco-elastoplasticity, for isotropic work-hardening

elastoplasticity, as well as for mixed-hardening elastoplasticity to ensure that the plastic consistency con-

dition is exactly satisfied at each time step once the computational schemes can take these symmetries into

account.

The symmetry groups for these simple models are either Lorentz group or Poincar�e group, and the
underlying spaces are all flat Minkowski spacetime. The models considered were all restricted to pressure

independent. However, it is interesting to observe the symmetry groups of the models that take the pressure

effect into account. In this paper we consider a constitutive model of Drucker–Prager type (in Sections 2
and 3) and manage to put it in a more appropriate setting (in Sections 4 and 5) such that the internal

spacetime structure and the internal symmetries (Sections 6 and 7) of the model are brought out. Using the

internal symmetry inherent in the constitutive model we develop a consistent scheme based on one-inte-

grating factor formulation (in Section 8). We also develop another one consistent scheme based on two-
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integrating factors formulation (in Section 9), and then a Runge–Kutta numerical scheme with a Newton–

Raphson iterative solution of an algebraic equation to enforce the consistency condition (in Section 10).

One direct benefit of our new schemes is that the stress point is automatically updated on the yield surface

without iterative calculations for every time step. This is what the conventional constitutive numerical
schemes desired and failed to achieve. Finally, we draw some conclusions (in Section 11).
2. The model

The small-strain elastoplastic model equipped with the yield criterion of Drucker and Prager (1952) can

be reformulated as follows:
_e ¼ _ee þ _ep; ð1Þ

_r ¼ 2G_ee þ 3K � 2G
3

ðtr _eeÞI3; ð2Þ

_k
of
or

¼ 2sy _ep; ð3Þ

f 6 0; ð4Þ

_kP 0; ð5Þ

_kf ¼ 0; ð6Þ

where a superimposed dot represents the material time derivative, Ik is the second order identity tensor with

dimensions k, and the symbol tr denotes the trace of the tensor. The yield function is
f :¼ 1
2

s 	 s � ðsy � atrrÞ2; ð7Þ
where
s :¼ r � 1
3
ðtrrÞI3 ð8Þ
is stress deviator, and a dot between two same order tensors denotes their Euclidean inner product. Here we

assume sy � atrr > 0, such that the original yield condition
ffiffiffiffiffiffiffiffiffiffiffiffi
s 	 s=2

p
þ atrr ¼ sy proposed by Drucker and

Prager is recovered. The stress admissible region is the interior of the cone as shown in Fig. 1.

The model needs only four experimentally determined material constants, namely the bulk modulus K,
the shear modulus G, the shear yield strength sy , and the frictional coefficient a, which are postulated to be
1

K
P 0; G > 0; sy > 0; a P 0: ð9Þ
The two material constants sy and a may be related to the cohesion stress c and internal friction angle /
through the following relations:
sy ¼
3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 /
p ; a ¼ tan/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 /
p : ð10Þ
Such that the Drucker–Prager cone is the inner tangent cone to the Mohr–Coulomb pyramid; see, for
example, Bousshine et al. (2001).



Fig. 1. The yield cone of the Drucker–Prager model. The vertex point ð0;�sy=aÞ of the cone in the coordinates ðs;�trrÞ is deleted.
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Taking the traces of both sides of Eq. (3) one has
tr _ep ¼ 3a
_k

sy
ðsy � atrrÞ; ð11Þ
that is, the model implies plastic compressibility. It shows that plastic deformation must be accompanied

by an increase in volume if a > 0, which is known as material dilatancy.
3. The switch of plastic irreversibility

From Eqs. (1)–(3) and (7) it follows that
tr _r ¼ 3Ktr _e � 9Ka
sy

_kðsy � atrrÞ; ð12Þ

_s ¼ 2G _e �
_k
cy

s; ð13Þ
where
cy :¼
sy
G

> 0 ð14Þ
is a material constant and
_e :¼ _e � 1
3
ðtr _eÞI3 ð15Þ
is strain rate deviator.
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Substituting Eqs. (12) and (13) into the consistency condition _f ¼ 0 yields
1

cy
s 	 s

"
þ 18Ka2

sy
ðsy � atrrÞ2

#
_k ¼ 2Gs 	 _e þ 6Kaðsy � atrrÞtr _e:
Because of
1

cy
s 	 s þ 18Ka2

sy
ðsy � atrrÞ2 > 0;
we have
f ¼ 0) Gs 	 _e þ 3Kaðsy � atrrÞtr _e > 0() _k > 0; ð16Þ

from which the following statement can be deduced:
ff ¼ 0 and Gs 	 _e þ 3Kaðsy � atrrÞtr _e > 0g ) _k > 0: ð17Þ

On the other hand, if _k > 0, Eq. (6) ensures f ¼ 0, which together with Eq. (16) lead to
_k > 0) ff ¼ 0 and Gs 	 _e þ 3Kaðsy � atrrÞtr _e > 0g: ð18Þ

From Eqs. (17) and (18) we thus conclude that the yield condition f ¼ 0 and the straining condition
Gs 	 _e þ 3Kaðsy � atrrÞtr _e > 0 are sufficient and necessary for plastic irreversibility _k > 0. Considering this
and the inequality (5), we thus reveal the following criteria for plastic irreversibility:
_k ¼ sy ½Gs 	 _e þ 3Kaðsy � atrrÞtr _e�
Rðsy � atrrÞ2

> 0 if f ¼ 0 and Gs 	 _e þ 3Kaðsy � atrrÞtr _e > 0; ð19Þ

_k ¼ 0 if f < 0 or Gs 	 _e þ 3Kaðsy � atrrÞtr _e6 0; ð20Þ

where
R :¼ Gþ 9Ka2 ð21Þ

is a material constant.

According to the complementary trios (4)–(6), there are just two phases: (i) _k > 0 and f ¼ 0, and (ii)
_k ¼ 0 and f 6 0. From the criterion (19) it is clear that (i) corresponds to the plastic phase (or called the on-

phase, or the elastoplastic phase) while (ii) to the elastic phase (or called the off-phase). During the plastic

phase, _k > 0, the mechanism of plasticity is on, the mechanical process is irreversible, and the material
exhibits elastoplastic behavior, while in the elastic phase, _k ¼ 0, the mechanism of plasticity is off, the

mechanical process is reversible, and the material responds elastically. Thus Eqs. (19) and (20) are called the

on–off switching criteria for the on–off switch of the mechanism of plasticity. Substituting Eq. (19) for _k
into Eqs. (12) and (13) results in a coupled highly non-linear differential equations system for trr and s.

In the following we are going to reduce these non-linearities through a group-theoretic approach.
4. An eight-dimensional Lie algebra representation

In this section and the next one we will manage to put the constitutive model in such a form as to reveal

internal symmetry. We first rearrange Eq. (12) into
d

dt
½expð�a0kÞðsy � atrrÞ� þ

_k
cy
½expð�a0kÞðsy � atrrÞ� ¼ ðg � 1ÞGa

g expða0kÞ
tr _e; ð22Þ
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where
a0 :¼
3ð1� gÞa2 þ g

gcy
ð23Þ
is a material constant, and
g :¼ 1� 2m
3

; 06 g < 1; ð24Þ
is called the index of compressibility. Through the above arrangement Eqs. (22) and (13) thus possess the

same integrating factor X 0 defined by
X 0 :¼ exp k
cy
: ð25Þ
Then, by noting that
expða0kÞ ¼ ðX 0Þb0 ; ð26Þ

where
b0 :¼ a0cy ¼
3ð1� gÞa2 þ g

g
; ð27Þ
Eq. (22) can be written as
d

dt
½ðX 0Þ1�b0ðsy � atrrÞ� ¼ ðg � 1ÞGa

gðX 0Þb0�1
tr _e: ð28Þ
Simultaneously, Eq. (13) changes to
d

dt
ðX 0sÞ ¼ 2GX 0 _e: ð29Þ
Let us introduce
eX ¼
eXs

X 0

� �
¼

eX 1

..

.eX 7

X 0

26664
37775 :¼ X 0

sy

s11ffiffi
2

p

s22ffiffi
2

p

s33ffiffi
2

p

s23

s13

s12

ðX 0Þ�b0ðsy � atrrÞ
sy

26666666666664

37777777777775
: ð30Þ
The yield condition
f ¼ 1
2

s 	 s � ðsy � atrrÞ2 ¼ 0
thus can be expressed as
s2y
ðX 0Þ2

X6
i¼1

ðeX iÞ2
"

� ðX 0Þ2b0ðeX 7Þ2
#
¼ 0:
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Since sy > 0, the above equation can be rearranged to
1

ðX 0Þ2
X6
i¼1

ðeX iÞ2
"

� ðX 0Þ2b0ðeX 7Þ2 � ðX 0Þ2
#
¼ �1:
In terms of ~g defined by
~g ¼ 1

ðX 0Þ2
I6 06�1 06�1

01�6 �ðX 0Þ2b0 0

01�6 0 �1

24 35; ð31Þ
we obtain
eXT~geX ¼ �1: ð32Þ

It is an equivalent form of the Drucker–Prager yield condition in the space of eX. The space endows such a
metric tensor ~g with signature (6,2) is known as a pseudo-Riemann manifold, which is locally a pseudo-
Euclidean space denoted by E86;2; and the above equation signifies a pseudo-sphere in such a space. The

above superscript T denotes the transpose.

Furthermore, Eqs. (29) and (28) together become
d

dt
eXs ¼ eAs

0X
0; ð33Þ
where
eAs
0 :¼

2

cy

_e11ffiffi
2

p _e22ffiffi
2

p _e33ffiffi
2

p _e23 _e13 _e12
ðg�1Þa
2gðX 0Þb0 tr _e

h iT
: ð34Þ
In view of Eqs. (19) and (32) the on–off switching criteria become
_X 0 ¼ eA0
s
eX s if eXT~geX ¼ �1 and eA0

s
eXs > 0; ð35Þ

_X 0 ¼ 0 if eXT~geX < �1 or eA0
s
eXs

6 0; ð36Þ

in which
eA0
s :¼

2

cyF1
_e11ffiffi
2

p _e22ffiffi
2

p _e33ffiffi
2

p _e23 _e13 _e12
ð1�gÞaðX 0Þb0

2g tr _e
h i

; ð37Þ

F1 :¼
R
G
ðX 0Þð2b0�2ÞðeX 7Þ2: ð38Þ
Note that eAs
0 is a seven-dimensional column vector; conversely,

eA0
s is a seven-dimensional row vector.

Organizing Eqs. (33), (35) and (36) we have
d

dt
eX ¼ eA eX; ð39Þ
where
eA ¼ 07�7 eAs
0eA0

s 0

" #
if eXT~geX ¼ �1 and eA0

s
eXs > 0; ð40Þ

eA ¼ 07�7 eAs
0

01�7 0

� �
if eXTeg eX < �1 or eA0

s
eXs

6 0: ð41Þ
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Eq. (39) is an eight-dimensional Lie algebra representation of the constitutive model (1)–(6). Because it is

easy to check that
tr eA ¼ 0; ð42Þ
eA in the plastic phase is a Lie algebra of slð6; 2;RÞ, which depends on eX, and thus Eq. (39) is not a linear
system.
5. A seven-dimensional Lie algebra representation

Due to the vanishing traces of the deviatoric tensors s and _e, the third components in Eqs. (30) and (39)
can be obtained from the first two components:
s33 ¼ �s11 � s22; _e33 ¼ � _e11 � _e22: ð43Þ
To delete this redundancy, let us introduce
X ¼ Xs

X 0

� �
¼

X 1

	
	
	
	
X 6

X 0

2666666664

3777777775
:¼ X 0

sy

a1s11 þ a2s22

a3s11 þ a4s22

s23

s13

s12

ðX 0Þ�b0ðsy � atrrÞ
sy

2666666664

3777777775
; ð44Þ
where
a1 :¼ sin h
�

þ p
3

�
; a2 :¼ sin h; a3 :¼ cos h

�
þ p
3

�
; a4 :¼ cos h; ð45Þ
with h being any real number. The on–off switching criteria turn out to be
_X 0 ¼ A0sX
s if XTgX ¼ �1 and A0sX

s > 0; ð46Þ

_X 0 ¼ 0 if XTgX < �1 or A0sX
s
6 0; ð47Þ
where
g :¼ 1

ðX 0Þ2
I5 05�1 05�1

01�5 �ðX 0Þ2b0 0

01�5 0 �1

24 35; ð48Þ

A0s ¼ A01 A02 A03 A04 A05 A06
� �

:¼ 2

cyF2
a1 _e11 þ a2 _e22 a3 _e11 þ a4 _e22 _e23 _e13 _e12

ð1�gÞaðX 0Þb0
2g tr _e

h i
; ð49Þ
in which the factor F2 becomes
F2 :¼
R
G
ðX 0Þð2b0�2ÞðX 6Þ2: ð50Þ
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Thus, Eq. (39) is reduced to
_X ¼ AX; ð51Þ

where
A ¼ 06�6 As
0

A0s 0

� �
if XTgX ¼ �1 and A0sX

s > 0; ð52Þ

A ¼ 06�6 As
0

01�6 0

� �
if XTgX < �1 or A0sX

s
6 0; ð53Þ
in which
As
0 ¼

A10
A20
A30
A40
A50
A60

26666664

37777775 :¼ 2

cy

a1 _e11 þ a2 _e22
a3 _e11 þ a4 _e22

_e23
_e13
_e12

ðg�1Þa
2gðX 0Þb0 tr _e

266666664

377777775
: ð54Þ
Consequently, the underlying space of the Drucker–Prager model in the plastic phase is the following

pseudo-sphere:
XTgX ¼ �1: ð55Þ

The space endows such a metric g with signature (5,2) and dependent on the temporal component X 0 as
shown in Eq. (48) is known as a pseudo-Riemann manifold, which is locally a pseudo-Euclidean space

denoted by E75;2. This is similar to the pseudo-Riemann spacetime structure for the mixed-hardening elas-

toplasticity as discussed by Liu (2003).

Note that Eq. (51) is a (5+2)-dimensional Lie algebra representation of the constitutive model (1)–(7), in

which X and A are the augmented stress vector and the control tensor, respectively. The control tensor

A organizes the input information of the strain rate tensor _e, and also depends on X. Thus we obtain a

Lie type equation
_X ¼ AðX; tÞX; ð56Þ

where the A of plastic phase satisfying
trA ¼ 0 ð57Þ

is a Lie algebra of slð5; 2;RÞ.
6. PSL(5; 2;R) symmetry in the plastic phase

Due to Eq. (51) we assert that the symmetry group of this model in the plastic phase is a one-parameter

subgroup GðtÞ satisfying the following Lie type equation (see, e.g., Liu, 2001b):

_GðtÞ ¼ AðGðtÞ; tÞGðtÞ; ð58Þ

Gð0Þ ¼ I7: ð59Þ

Thus the solution of Eq. (51) may be expressed in the following formula for the transition from the aug-
mented stress Xðt1Þ at time t1 to the augmented stress XðtÞ at time t:
XðtÞ ¼ ½GðtÞG�1ðt1Þ�Xðt1Þ: ð60Þ
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From Eqs. (5), (25) and (44) it follows that
X 0ðtÞPX 0ðt0ÞPX 0ðtiÞ; 8 tP t0 P ti; ð61Þ

which is applicable to both the on and off phases.

In the remainder of this section we concentrate on the plastic phase to bring out internal symmetry

inherent in the model in the plastic phase. Denote by Ion an open, maximal, continuous time interval during
which the mechanism of plasticity is on exclusively. From Eq. (52) it is easy to verify that the control tensor
A in the plastic phase satisfies Eq. (57). Hence, the corresponding transformation G satisfies
detG ¼ 1; ð62Þ

G00P 1: ð63Þ

Thereby the on-phase control tensor A is an element of the real Lie algebra slð5; 2;RÞ and generates

the on-phase transformation G, which is thus an element of the special orthochronous pseudo-linear

group SLð5; 2;RÞ.
From Eq. (46), _X 0 > 0 strictly when the mechanism of plasticity is on; hence,
X 0ðtÞ > X 0ðt1Þ; 8 t > t1; t; t1 2 Ion; ð64Þ

which means that in the sense of irreversibility there exists a future-pointing time-orientation from the
augmented stress Xðt1Þ to XðtÞ. Compare Eqs. (64) and (61). Moreover, such time-orientation is a causal
one, because the augmented stress transition formula (60) and inequality (64) establish a causality relation

between the two augmented stresses Xðt1Þ and XðtÞ in the sense that the preceding augmented stress Xðt1Þ
influences the following augmented stress XðtÞ according to formula (60). Accordingly, the augmented
stress Xðt1Þ chronologically and causally precedes the augmented stress XðtÞ. This is indeed a common
property for all models with inherent symmetry of the orthochronous group. By this symmetry a core

connection among irreversibility, the time arrow of evolution, and causality has thus been established for

plasticity in the plastic phase.
From Eq. (44) it follows that
s11

s22

s23

s13

s12

trr

26666664

37777775 ¼

a4 �a2
�a3 a1

02�3 02�1

03�2
ffiffi
3

p

2
I3 03�1

01�2 01�3
�
ffiffi
3

p
ðX 0Þb0
2a

26664
37775 2syffiffiffi

3
p

X 0
Xs þ

0

0

0

0

0
sy
a

26666664

37777775; ð65Þ
and one can determine the stress tensor rðtÞ once the augmented stress vector XðtÞ is calculated. This is
indeed a projective realization of the response. By this and the on-phase transition (60) one can map rðt1Þ to
the current response rðtÞ.
7. T(6) symmetry in the off-phase

Contrary to Eq. (60) of the plastic phase, the transition for the off phase is very simple. To find it, recall
that Eqs. (58)–(60) are still applicable but with
GðtÞ ¼ I6 TðtÞ
01�6 1

� �
; ð66Þ
where T is of order 6 · 1 and governed by

_T ¼ As

0;
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in which As
0 is given in Eq. (54) with X 0 fixed. Thus it is easy to show that T 2 T ð6Þ, and G 2 T ð7Þ;

therefore, the constitutive law in the off-phase has an internal symmetry characterized by the translation

group T ð6Þ.
The inverse of Eq. (66) is given by
G�1 ¼ I6 �T

01�6 1

� �
: ð67Þ
Thus according to Eq. (60) we obtain
XsðtÞ
X 0ðtÞ

� �
¼ I6 TðtÞ � Tðt1Þ

01�6 1

� �
Xsðt1Þ
X 0ðt1Þ

� �
; ð68Þ
which is valid for the off-phase. In a similar way the stress response in the off-phase can be realized by

invoking Eq. (65) and the off-phase transition formula (68).

In summary the stress response is the projective realization (65) of the on-phase transition formula (60)

or the off-phase transition formula (68); switching between the two depends upon the control tensor A

and obeys the on–off switching criteria (46) and (47). The switching from a transformation of the special

orthochronous pseudo-linear group in the plastic phase to a translation transformation in the off-phase
indicates that internal symmetry switches from one kind to another, and vice versa. As a result the

constitutive model in the stress space of r has symmetry switching between the translation group T ð6Þ
acting on the admissible stresses in the interior of the cone as shown in Eqs. (4) and (7) as well as in

Fig. 1, and the projective special orthochronous pseudo-linear group PSLð5; 2;RÞ acting on the yield
hyper-surface.
8. Numerical method based on one-integrating factor formulation

For calculation purpose we may approximate the specified controlled-strain path by many rectilinear

strain paths, such that _e at each time step is constant, denoting by _eð‘Þ at a discrete time t ¼ t‘. We first
consider elastic phase. Under specified strain path _eð‘Þ and initial stress rð‘Þ the elastic response can be
obtained by
sðtÞ ¼ sð‘Þ þ 2Gðt � t‘Þ _eð‘Þ; ð69Þ

trrðtÞ ¼ trrð‘Þ þ 3Kðt � t‘Þtr _eð‘Þ: ð70Þ
The end time of elastic phase denoted by ton can be determined according to the criterion (19) as follows.
First solve for t the following algebraic equation
½sð‘Þ þ ðt � t‘Þ _eð‘Þ� 	 ½sð‘Þ þ ðt � t‘Þ _eð‘Þ� � 2½sy � atrrð‘Þ � 3Kaðt � t‘Þtr _eð‘Þ�2 ¼ 0; ð71Þ

which has been obtained by substituting the elastic equations (69) and (70) into the yield condition

s 	 s � 2ðsy � atrrÞ2 ¼ 0. However, the solution t of Eq. (71) must satisfy GsðtÞ 	 _eð‘Þ þ 3Ka½sy�
atrrðtÞ�tr _eð‘Þ > 0 in order to be a switch-on time ton. If there exist no solutions to Eq. (71) or the solution t
to Eq. (71) does not satisfy GsðtÞ 	 _eð‘Þ þ 3Ka½sy � atrrðtÞ�tr _eð‘Þ > 0, then the strain path will not switch on
the plastic mechanism.

From Eq. (71) we obtain a quadratic equation for t � t‘,
Aðt � t‘Þ2 þ Bðt � t‘Þ þ C ¼ 0;
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where
A :¼ 4G2 _eð‘Þ 	 _eð‘Þ � 18K2a2½tr _eð‘Þ�2;
B :¼ 4Gsð‘Þ 	 _eð‘Þ þ 12Ka½sy � atrrð‘Þ�tr _eð‘Þ;
C :¼ sð‘Þ 	 sð‘Þ � 2½sy � atrrð‘Þ�2:
Thus, we have
ton ¼ t‘ þ
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
: ð72Þ
The evolutions of elastic equations are rather simple, and we below turn our attention to the numerical

solutions of plastic equations. The numerical scheme would provide a medium to calculate the value of X at

time t ¼ t‘þ1 when knowing X at time t ¼ t‘. The evolution of X is governed by the dynamical law (51) with
matrix A given by Eq. (52). Due to the piecewise linearity of controlled strain, _e is constant in each time
increment equal to Dt. Unluckily, due to the presence of X 0 and X 6 in Eqs. (49) and (54), this is not true for
matrix A. Therefore we approximate the solution of the dynamical law (51) by considering X 0 and X 6

constant in each single time step. Under such an additional hypothesis, the matrix A is constant, and so the

numerical solution of Eq. (51) is found to be
Xð‘þ 1Þ ¼ Gð‘ÞXð‘Þ; ð73Þ
where
Gð‘Þ :¼ exp½DtAð‘Þ� ¼
I6 þ z1�1

A0s ð‘ÞAs
0
ð‘Þ A

s
0ð‘ÞA

0
s ð‘Þ z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0s ð‘ÞAs
0
ð‘Þ

p As
0ð‘Þ

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð‘ÞAs

0
ð‘Þ

p A0s ð‘Þ z1

24 35; ð74Þ
in which
z1 :¼ cosh Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð‘ÞA

s
0ð‘Þ

q� �
; z2 :¼ sinh Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð‘ÞA

s
0ð‘Þ

q� �
: ð75Þ
In order to increase the accuracy we can adopt a second order group preserving scheme, which replaces

Gð‘Þ in Eq. (73) by
Gð�‘Þ :¼ exp½DtAð�‘Þ� ¼
I6 þ z1�1

A0s ð�‘ÞAs
0
ð�‘Þ A

s
0ð�‘ÞA

0
s ð�‘Þ z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0s ð�‘ÞAs
0
ð�‘Þ

p As
0ð�‘Þ

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð�‘ÞAs

0
ð�‘Þ

p A0s ð�‘Þ z1

24 35; ð76Þ
where �‘ denotes the value at time t‘ þ Dt=2 and
z1 :¼ cosh Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð�‘ÞA

s
0ð�‘Þ

q� �
; z2 :¼ sinh Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0s ð�‘ÞA

s
0ð�‘Þ

q� �
: ð77Þ
The value of X at time t‘ þ Dt=2 which appeared in A0s and As
0 is calculated by
Xð�‘Þ ¼ exp Dt
2

Að‘Þ
� �

Xð‘Þ; ð78Þ
and then Xð‘þ 1Þ is calculated by
Xð‘þ 1Þ ¼ Gð�‘ÞXð‘Þ ð79Þ
with Gð�‘Þ from Eq. (76).
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To match the consistency condition exactly, we impose the condition (55) on the numerical solutions

of Xð‘þ 1Þ, which by Eq. (48) leads to
Fig. 2.

umetri
X 0ð‘þ 1Þ ¼
P5

i¼1ðX ið‘þ 1ÞÞ2

ðX 6ð‘þ 1ÞÞ2

 !1=ð2b0Þ
; ð80Þ
where X 1ð‘þ 1Þ; . . . ;X 6ð‘þ 1Þ are calculated by Eq. (79). Substituting X 1ð‘þ 1Þ; . . . ;X 6ð‘þ 1Þ and
X 0ð‘þ 1Þ into Eq. (65) we obtain sð‘þ 1Þ and trrð‘þ 1Þ at the current step.
Now, let us apply the above scheme to a certain example. The material constants used in the calcu-

lations were G ¼ 3000 psi � 20:67 MPa, c ¼ 30 psi � 206:7 kPa, / ¼ 40� and m ¼ 0:3, and thus sy ¼ 21:55
psi � 148:48 kPa and a � 0:2. Fig. 2 displays the stress strain curves under cyclically increasing ampli-
tudes of deviatoric strains and a constant volumetric strain increment. The volumetric stress as shown in

Fig. 2(f) is tending to large negative value due to dilatancy. It should note that the increasing of devi-

atoric stresses is not due to the hardening effect (which we not consider here) but is due to the dilatancy
of volumetric strain.

In Fig. 3 we show the consistency error defined by s 	 s=2� ðsy � atrrÞ2. When this quantity is zero for
all plastic loading time we obtain a consistent scheme which preserves the consistency condition. As shown

in Fig. 3 the consistency error by the one-integrating factor scheme is zero.
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9. Numerical method based on two-integrating factors formulation

Now we turn our attention to a direct numerical solution of Eqs. (12) and (13). In terms of the inte-

grating factor X 0 defined by Eq. (25), Eq. (13) can be written as
d

dt
ðX 0sÞ ¼ 2GX 0 _e: ð81Þ
Let aðtÞ > 0 and bðtÞ > 0 be unknown functions, such that
2a2 ¼ s 	 s; b2 ¼ ðsy � atrrÞ2; a2 � b2 ¼ 0; ð82Þ

the last of which is due to the yield condition. Taking the inner product of Eq. (81) with s and noting

s 	 s ¼ 2a2 and s 	 _s ¼ 2a _a, we obtain

d

dt
ðaX 0Þ ¼ GX 0a�1s 	 _e: ð83Þ
As before, we let
Xa ¼
Xs

a

X 0a

� �
¼ Xs

a

aX 0

� �
¼

X 1a
	
	
	
X 5a
aX 0

26666664

37777775 :¼ X 0

a1s11 þ a2s22

a3s11 þ a4s22

s23

s13

s12

a

26666664

37777775 ð84Þ
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be an augmented six-dimensional stress vector, and from Eqs. (81) and (83) it follows that
_Xa ¼ AaXa; ð85Þ

where
Aa :¼
05�5 As

a

ðAs
aÞ
T

0

� �
; As

a :¼ 2Ga�1

a1 _e11 þ a2 _e22
a3 _e11 þ a4 _e22

_e23
_e13
_e12

266664
377775: ð86Þ
Similarly, define another integrating factor by
x0 :¼ exp �9Ka2k
sy

� �
¼ ðX 0Þ�9Ka2=G

; ð87Þ
and thus Eq. (12) can be written as
d

dt
½x0ðsy � atrrÞ� ¼ �3Kax0tr _e: ð88Þ
Taking the product of Eq. (88) with sy � atrr and noting that ðsy � atrrÞdðsy � atrrÞ=dt ¼ b _b and
ðsy � atrrÞ2 ¼ b2 by Eq. (82)2, we obtain
d

dt
ðbx0Þ ¼ �3Kax0b�1ðsy � atrrÞtr _e: ð89Þ
Let
Xb :¼
X 1b
X 0b

� �
¼ x0ðsy � atrrÞ

bx0

� �
: ð90Þ
From Eqs. (88) and (89) we obtain
_Xb ¼ AbXb; ð91Þ

where
Ab :¼ 0 �3Kab�1tr _e
�3Kab�1tr _e 0

� �
: ð92Þ
In above derivations we split the yield condition as shown by Eq. (82)3 into two ‘‘sub-yield’’ conditions

as shown by Eqs. (82)1 and (82)2, respectively. The former after multiplying by ðX 0Þ2 on both sides can be
written as, in terms of Xa defined by Eq. (84),
XTa gaXa ¼ kXs
ak
2 � ðX 0a Þ

2 ¼ ðX 0Þ2 1
2
ksk2

�
� a2

�
¼ 0; ð93Þ
where
ga ¼
I5 05�1

01�5 �1

� �
ð94Þ
is an indefinite metric tensor of the six-dimensional Minkowski spacetime M5þ1. Eq. (93) corresponds to a

cone in the space of Xa in M5þ1. Since Aa in the dynamical law (85) satisfying
ATa ga þ gaAa ¼ 0 ð95Þ
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is an (5+1)-dimensional Lie algebra of the proper orthochronous Lorentz group SOoð5; 1Þ, Ga generated

from Eq. (85) satisfies the following group properties:
Fig. 4.

twin-c
GT
a gaGa ¼ ga; detGa ¼ 1; ðGaÞ00 P 1; ð96Þ
where ðGaÞ00 denotes the zeroth component of Ga.

Correspondingly, Eq. (82)2 after multiplying by ðx0Þ2 on both sides can be written as, in terms of Xb

defined by Eq. (90),
XTb gbXb ¼ kXs
bk
2 � ðX 0b Þ

2 ¼ ðx0Þ2½ðsy � atrrÞ2 � b2� ¼ 0; ð97Þ

where
gb ¼
1 0

0 �1

� �
: ð98Þ
Eq. (97) corresponds to a cone in the space of Xb in M1þ1. Since Ab in the dynamical law (91) satisfying
ATb gb þ gbAb ¼ 0 ð99Þ

is an (1+1)-dimensional Lie algebra of the proper orthochronous Lorentz group SOoð1; 1Þ, Gb generated

from Eq. (91) satisfies the following group properties:
GT
b gbGb ¼ gb; detGb ¼ 1; ðGbÞ00 P 1: ð100Þ
From a geometric view, the underlying space of Xa and Xb which governed respectively by Eqs. (85) and

(91) together with the two cone conditions (93) and (97) is a direct product of M5þ1 �M1þ1 as shown in

Fig. 4. The internal symmetry group of the above two integrating factors system is SOoð5; 1Þ � SOoð1; 1Þ.
For calculation purpose we now derive a numerical scheme based on the two integrating factors for-

mulation. The numerical scheme would provide a medium to calculate the values of Xa and Xb at time

t ¼ t‘þ1 when knowing Xa and Xb at time t ¼ t‘.
The evolution of Xa is governed by the dynamical law (85) with matrix Aa given by Eq. (86). Due to the

piecewise linearity of controlled strain, _e is constant in each time increment equal to Dt. Unluckily, due to
the presence of aðtÞ in Eq. (86), this is not true for matrix Aa. Therefore we approximate the solution of the

dynamical law (85) by considering a constant in each single time step. Under such an additional hypothesis,
the matrix Aa is constant, and so the numerical solution of Eq. (85) is known to be
Xað‘þ 1Þ ¼ Gað‘ÞXað‘Þ; ð101Þ
The Drucker–Prager yield cone is extended to a twin-cone in the product space of M5þ1 �M1þ1. It is the construction of the

one in Minkowski spacetimes of Xa and Xb that signifies a conceptual breakthrough.
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where
Gað‘Þ :¼ exp½DtAað‘Þ� ¼
I5 þ ðz3�1Þ

As
að‘Þ	As

að‘Þ
As

að‘ÞðA
s
aÞ
Tð‘Þ z4A

s
að‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
að‘Þ	As

að‘Þ
p

z4ðAs
aÞ
Tð‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
að‘Þ	As

að‘Þ
p z3

264
375; ð102Þ
in which
z3 :¼ cosh Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As

að‘Þ 	 A
s
að‘Þ

q� �
; z4 :¼ sinh Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As

að‘Þ 	 A
s
að‘Þ

q� �
: ð103Þ
A similar argument applied to the dynamical law (91) with matrix Ab given by Eq. (92) leads to
Xbð‘þ 1Þ ¼ Gbð‘ÞXbð‘Þ; ð104Þ
where
Gbð‘Þ :¼ exp½DtAbð‘Þ� ¼ coshð�3Kab�1ð‘Þtr _eð‘ÞDtÞ sinhð�3Kab�1ð‘Þtr _eð‘ÞDtÞ
sinhð�3Kab�1ð‘Þtr _eð‘ÞDtÞ coshð�3Kab�1ð‘Þtr _eð‘ÞDtÞ

� �
: ð105Þ
However, in their current forms Eqs. (101) and (104) insuffice to determine the values of sð‘þ 1Þ and
trrð‘þ 1Þ, since from Eqs. (84) and (90) we have
s11ð‘þ 1Þ
s22ð‘þ 1Þ
s23ð‘þ 1Þ
s13ð‘þ 1Þ
s12ð‘þ 1Þ

266664
377775 ¼

a4 �a2
�a3 a1

02�3

03�2
ffiffi
3

p

2
I3

24 35 2að‘þ 1Þffiffiffi
3

p
X 0a ð‘þ 1Þ

Xs
að‘þ 1Þ; ð106Þ

trrð‘þ 1Þ ¼ 1
a

sy

�
� X 1b ð‘þ 1Þ
X 0b ð‘þ 1Þ

bð‘þ 1Þ
�
; ð107Þ
and there are still two unknowns að‘þ 1Þ and bð‘þ 1Þ on the right-hand sides. For this problem we need
four equations:
X 0ð‘þ 1Það‘þ 1Þ ¼ X 0a ð‘þ 1Þ; ð108Þ

x0ð‘þ 1Þbð‘þ 1Þ ¼ X 0b ð‘þ 1Þ; ð109Þ

a2ð‘þ 1Þ � b2ð‘þ 1Þ ¼ 0; ð110Þ

x0ð‘þ 1Þ � ðX 0ð‘þ 1ÞÞ�9Ka2=G ¼ 0; ð111Þ
to solve four unknowns að‘þ 1Þ, bð‘þ 1Þ, X 0ð‘þ 1Þ and x0ð‘þ 1Þ. In above the values on right-hand sides
are all known. Eq. (108) is obtained from the last row in Eq. (84); Eq. (109) is obtained from the last row in

Eq. (90); Eq. (110) is a direct result of Eq. (82)3; and Eq. (111) is obtained from Eq. (87). Through some

algebraic manipulations we obtain the solution of X 0ð‘þ 1Þ by
X 0ð‘þ 1Þ ¼ X 0a ð‘þ 1Þ
X 0b ð‘þ 1Þ

� �G=R

; ð112Þ
and að‘þ 1Þ can be calculated by Eq. (108). Then x0ð‘þ 1Þ is calculated by Eq. (111), and bð‘þ 1Þ can be
obtained from Eq. (109). Substituting að‘þ 1Þ and bð‘þ 1Þ into Eqs. (106) and (107) we thus obtain
sð‘þ 1Þ and trrð‘þ 1Þ.
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Especially, we have forcing the consistency condition by Eq. (110), and so the new scheme not only

preserves the cone conditions
XTa ð‘þ 1ÞgaXað‘þ 1Þ ¼ 0; XTb ð‘þ 1ÞgbXbð‘þ 1Þ ¼ 0; ð113Þ
but also the consistency condition
1

2
ksð‘þ 1Þk2 � ½sy � atrrð‘þ 1Þ�2 ¼ 0: ð114Þ
The equality in Eq. (114) says nothing but for every time increment the stress point rð‘þ 1Þ is located on the
yield hyper-surface. In other words, the consistency condition is fulfilled exactly for every time step in the on-

phase. Therefore, the new numerical scheme may be specifically called a consistent scheme. This explains

why this scheme provides a zero error of the consistency condition as shown in Fig. 3.
10. Runge–Kutta scheme based on integral constitutive solution

In terms of
_K :¼ sy � atrr
sy

_k; ð115Þ
Eqs. (12) and (13) can be written as
tr _r ¼ 3Ktr _e � 9Ka _K; ð116Þ

_s ¼ 2G _e � G _K
sy � atrr

s: ð117Þ
The integrals of the above two equations are
trrðtÞ ¼ trrðsÞ þ 3KDtr e � 9Ka½KðtÞ � KðsÞ�; ð118Þ

sðtÞ ¼ 1

Y ðKðtÞÞ Y ðKðsÞÞsðsÞ
�

þ
Z t

s
2GY ðKðnÞÞ _eðnÞdn

�
; ð119Þ
where Dtr e is a constant volumetric strain increment at each time step increment Dt ¼ t � s, and Y is defined
by
Y ðKÞ :¼ exp
Z K

0

G
sy � atrrðpÞ dp

� �
¼ c0 þ 9Ka2K

c0

� �G=ð9Ka2Þ

; ð120Þ
where p is a dummy variable to denote K, and
c0 :¼ sy � atrrðsÞ � 3KaDtr e � 9Ka2KðsÞ ð121Þ

is a constant.

From Eq. (7) at the yield state we have
1

2
s 	 s ¼ ðsy � atrrÞ2; ð122Þ

1

2
s 	 _s ¼ �aðsy � atrrÞtr _r: ð123Þ
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Inserting Eq. (116) for tr _r and Eq. (117) for _s into Eq. (123) and considering Eq. (122), we obtain
ðsy � atrrÞðR _K � 3Katr _eÞ ¼ Gs 	 _e; ð124Þ

where R was defined by Eq. (21). Taking the time derivative of Eq. (124) while keeping _e and tr _e to be
constant, inserting Eqs. (116) and (117) and then combining with Eq. (124) again, yield
ðc0 þ 9Ka2KÞR€K � 6KaRtr _e _K þ R2 _K2 ¼ 2G2k _ek2 � 9K2a2ðtr _eÞ2: ð125Þ

The above is a second order autonomous differential equation for K. Any desired degree of accuracy can
be achieved by employing high-order Runge–Kutta methods to integrate Eq. (125). In the calculations

presented in Fig. 3 the above equation was integrated by a fourth-order Runge–Kutta method, which

together with the discretization of Eq. (119) by the trapezoidal rule
sðtÞ ¼ Y ðKðsÞÞ
Y ðKðtÞÞ sðsÞ þ GDt 1

�
þ Y ðKðsÞÞ

Y ðKðtÞÞ

�
_eðsÞ; ð126Þ
and Eq. (118) provide a numerical method to calculate the stress. We call it the Runge–Kutta scheme.

The result of consistency error is shown in Fig. 3, the values of which may be large to 5 (psi)2.

In order to enhance the accuracy of consistency we may substitute Eqs. (118) and (126) into the yield

condition (122) to obtain a non-linear algebraic equation for K:
Y 2ðKðsÞÞsðsÞ 	 sðsÞ þ 2GDtsðsÞ 	 _eðsÞY ðKðsÞÞ½Y ðKðtÞÞ þ Y ðKðsÞÞ� þ ðGDtÞ2k _eðsÞk2½Y ðKðtÞÞ

þ Y ðKðsÞÞ�2 � 2½c0 þ 9Ka2KðtÞ�2Y 2ðKðtÞÞ
¼ 0: ð127Þ
Solving this equation by the Newton–Raphson method with error tolerance 10�8, and using Eqs. (118) and

(126) to calculate the stress, the result of consistency error is shown in Fig. 3 marked by the Newton–

Raphson scheme, which largely improves the accuracy to the order of 10�10. As compared to the consistent

schemes developed in Sections 8 and 9, this scheme spends much time on the iterative solution of the above

equation. As compared with the Runge–Kutta scheme the errors of the above three schemes are almost zero
as shown in Fig. 3.

Because the one-integrating factor scheme and the two-integrating factors scheme automatically match

the consistency condition without any iteration, they can save about 90% or more CPU time than the

backward Euler integration scheme (Simo and Hughes, 1998). For example, the computational time of

the new schemes spent in the computation of the above numerical example in Fig. 2 is about 0.2 s, but the

backward Euler integration scheme requires 2 s.
11. Conclusions

In this paper we have investigated the internal symmetry inherent in a constitutive model of Drucker–
Prager type. Even though the constitutive equations are highly non-linear in the stress space of r, they can

be converted to a Lie type system _X ¼ AX in the seven-dimensional augmented stress space of X. In the

augmented stress space an internal spacetime structure of the pseudo-Riemannian type is brought out. The

control tensor A for the plastic phase was proved to be an element of the real Lie algebra slð5; 2;RÞ of
the special orthochronous pseudo-linear group SLð5; 2;RÞ, and the one-parameter subgroup G of the

system _G ¼ AG with the on-phase A was shown to be an element of the special orthochronous pseudo-

linear group, so that the causality relation of the augmented stresses was verified. To account for both the

on and off phases we constructed a composite space endowed with a pseudo-Riemann metric with signature
(5,2) on the pseudo-sphere but with a pseudo-Euclidean metric having signature (5,1) on each of the interior
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of the cones inside the pseudo-sphere. As a result we found that the Drucker–Prager elastoplastic model

possesses two kinds of symmetry––T ð6Þ in the off-phase and PSLð5; 2;RÞ in the plastic phase––and has
symmetry switching between the two depending on the control input.

In addition that we also proposed a two-integrating factors formulation of the Drucker–Prager con-
stitutive equations, which splits the yield criterion into two sub-yield functions in deviatoric and volumetric

stress spaces. Then, two Lie type differential equations _Xa ¼ AaXa and _Xb ¼ AbXb were constructed. The

augmented states Xa and Xb satisfy the cone conditions in spaces M
5þ1 and M1þ1, respectively. The Lie

algebras are the direct sum of soð5; 1Þ � soð1; 1Þ and the corresponding Lie symmetries are

SOoð5; 1Þ � SOoð1; 1Þ.
Based on these symmetry studies, numerical schemes which preserve the group properties for every time

increment were developed. These group preserving schemes may be specifically called consistent schemes,

since they are capable, among other benefits derivable from the group properties, of updating the stress
point to be automatically located on the yield surface at the end of each time increment in the plastic phase

without any iterative calculations, that is, the consistency condition is fulfilled automatically and exactly.

In this regard, the conventional numerical schemes typically do not share the group properties so that

perform less accurate than the consistent schemes.
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