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Abstract

Internal symmetries for the Drucker—Prager material model and numerical methods based on them are investigated
here. We first convert the non-linear constitutive equations to a Lie type system X = A(X, )X, where A € 5/(5,2,R) is a
Lie algebra of the special orthochronous pseudo-linear group SL(5,2, R). The underlying space of Drucker—Prager
model in the plastic phase is a pseudo-sphere in the pseudo-Riemann manifold, which is locally a pseudo-Euclidean
space [E;z, and whose metric tensor is indefinite having signature (5,2) and also depends on the temporal component.
Then, we split the Drucker—Prager yield condition into two “sub-yield” conditions, which together with two integrating
factors idea led us to derive two Lie type systems in the product space M>*! @ M!*!. The Lie algebra is the direct sum
so(5,1) @ so(1,1), and the symmetry group is thus SO, (5, 1) ® SO,(1, 1). These results are essential from computational
aspect. Based on these symmetry groups exponential mappings are developed, which update stress points exactly on the
yield surface at every time increment without any iteration. As an example, the results calculated by using the two
different group preserving schemes are compared to that calculated by the Runge-Kutta scheme together with the
Newton—Raphson iterative solution of a non-linear algebraic equation which enforcing the consistency condition.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to its extreme versatility and accuracy in modeling material behavior, plasticity theory has gained
widespread use in numerical simulations of practical geotechnical engineering problems. A wide range of
geotechnical materials including rock, concrete, soil and porous metals display pressure-dependent plastic
yielding behavior and inelastic volumetric dilatancy. Building upon the pioneering works of Drucker and
Prager (1952) on soil plasticity, the modern trend has been toward the development of more and more
elaborate and complicated elastoplastic constitutive models which resemble the behavior of geomaterials
more closely. Also, considerable efforts were devoted to the study of deformation fields and crack growth
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characteristics in pressure-sensitive materials, for example, Li and Pan (1990); Miao and Drugan (1993);
Borja (2000); Wells and Sluys (2001); Bousshine et al. (2001); Borja and Regueiro (2001), and references
therein.

The numerical solution of elastoplastic boundary-value problems in solid mechanics is based on an
iterative solution of the discretized momentum balance equations. Typically, for every loading time step
with a converged configuration at step £, solution involves the following steps (Simo and Hughes, 1998): (1)
The discretized momentum equations are used to compute a new configuration for step £+ 1 via an
incremental motion which is used to compute at every stress point incremental strains Ag. (2) At every stress
point, for the given incremental strains Ag, new values of state variables (¢ + 1) are obtained by inte-
gration of the local constitutive equations. (3) From the new computed stresses, balance of momentum is
checked and if violated iterations are performed by returning to step (1).

For most computational architectures currently in use, steps (1) and (3) are carried out by finite-element/
finite-difference procedures. In this paper attention is focused on step (2) for the elastoplastic constitutive
equations with the Drucker—Prager yielding criterion and associated plastic flow rule. This step is a central
problem in computational plasticity as it corresponds to the main role played by the constitutive equations.
However, due to non-linear nature of the model equations in plasticity, the difficulties for developing exact
method to solve them are involved in this issue. For its great consumption of computational time, and the
efficiency and accuracy of the calculations of mechanical problems being strongly influenced by the effi-
ciency and accuracy of constitutive-equations solving schemes, it has drawn much attention over the past
several decades and has stimulated many researches in this issue to develop accurate and economic algo-
rithms; see, for example, Nagtegaal et al. (1974); Hughes (1984); Ortiz and Popov (1985); Simo and Taylor
(1985); Loret and Prevost (1986); Hong and Liou (1993); Simo and Hughes (1998); Hong and Liu (1999a,
2000); Biittner and Simeon (2002); Auricchio and Beirao da Veiga, 2003; Hjiaj et al. (2003); Mukherjee and
Liu (2003) and Liu (2001a, 2004a,b) among many others.

A numerical scheme which preserves symmetry and utilizes the invariance property from one time step to
the next one or few steps will be more capable of capturing key features during elastoplastic deformation
and have long-term stability and much improved efficiency and accuracy. Therefore the issue of internal
symmetries in the constitutive laws of plasticity is not only important in its own right, but will also find
applications to the computational plasticity.

It deserves to noting recent attempt to present a unified theoretically and computationally convenient
treatment of the backward-difference scheme for the integration of complex constitutive models; see, e.g.,
Cocchetti and Perego (2003). On the other hand, some recent attempts to propose the integration schemes
based on the internal symmetries of simple elastoplastic constitutive models also deserve a further attention.
A novel formulation for elastoplasticity has been recently developed by Hong and Liu (1999a,b, 2000); Liu
and Hong (2001); Mukherjee and Liu (2003), and Liu (2001a, 2004a,b). These authors have explored the
internal symmetry groups of the constitutive models for perfect elastoplasticity with or without considering
large deformation, for bilinear elastoplasticity, for visco-elastoplasticity, for isotropic work-hardening
elastoplasticity, as well as for mixed-hardening elastoplasticity to ensure that the plastic consistency con-
dition is exactly satisfied at each time step once the computational schemes can take these symmetries into
account.

The symmetry groups for these simple models are either Lorentz group or Poincaré group, and the
underlying spaces are all flat Minkowski spacetime. The models considered were all restricted to pressure
independent. However, it is interesting to observe the symmetry groups of the models that take the pressure
effect into account. In this paper we consider a constitutive model of Drucker—Prager type (in Sections 2
and 3) and manage to put it in a more appropriate setting (in Sections 4 and 5) such that the internal
spacetime structure and the internal symmetries (Sections 6 and 7) of the model are brought out. Using the
internal symmetry inherent in the constitutive model we develop a consistent scheme based on one-inte-
grating factor formulation (in Section 8). We also develop another one consistent scheme based on two-



C.-S. Liu | International Journal of Solids and Structures 41 (2004) 3771-3791 3773

integrating factors formulation (in Section 9), and then a Runge—Kutta numerical scheme with a Newton—
Raphson iterative solution of an algebraic equation to enforce the consistency condition (in Section 10).
One direct benefit of our new schemes is that the stress point is automatically updated on the yield surface
without iterative calculations for every time step. This is what the conventional constitutive numerical
schemes desired and failed to achieve. Finally, we draw some conclusions (in Section 11).

2. The model

The small-strain elastoplastic model equipped with the yield criterion of Drucker and Prager (1952) can
be reformulated as follows:

E=+ &, (1)
6 =2G& + ﬂ (tré)l;, 2)
ig—ﬁ =21,#, (3)
/<0, (4)
4>0, 5)
Af =0, (6)

where a superimposed dot represents the material time derivative, I; is the second order identity tensor with
dimensions &, and the symbol tr denotes the trace of the tensor. The yield function is

1
f::Es-s—(ry—fxtra)z, (7)
where
s:=0— %(tra)h (8)

is stress deviator, and a dot between two same order tensors denotes their Euclidean inner product. Here we
assume 1, — atre > 0, such that the original yield condition /s - s/2 + atre = 7, proposed by Drucker and
Prager is recovered. The stress admissible region is the interior of the cone as shown in Fig. 1.

The model needs only four experimentally determined material constants, namely the bulk modulus X,
the shear modulus G, the shear yield strength 7,, and the frictional coefficient «, which are postulated to be

E}O, G>0, 7,>0, a=0. 9)
The two material constants 7, and o may be related to the cohesion stress ¢ and internal friction angle ¢
through the following relations:

e g @ (10)

Y V9F 12tan’ ¢ V9 + 12tan ¢

Such that the Drucker—Prager cone is the inner tangent cone to the Mohr—Coulomb pyramid; see, for
example, Bousshine et al. (2001).
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—tro

Fig. 1. The yield cone of the Drucker—Prager model. The vertex point (0, —7,/«) of the cone in the coordinates (s, —tro) is deleted.

Taking the traces of both sides of Eq. (3) one has
30

Ty

tref =

(1, — atre), (11)
that is, the model implies plastic compressibility. It shows that plastic deformation must be accompanied
by an increase in volume if o > 0, which is known as material dilatancy.

3. The switch of plastic irreversibility

From Egs. (1)—(3) and (7) it follows that
9K

tre = 3Ktré—r—i(ry—octra), (12)
y
)
§=2Gé— s, (13)
Ty
where
7y = Dso (14)

G

is a material constant and

a:e—éamn3 (15)

is strain rate deviator.



C.-S. Liu | International Journal of Solids and Structures 41 (2004) 3771-3791 3775
Substituting Eqgs. (12) and (13) into the consistency condition f = 0 yields

1 18K o?
TS -S +

; (1, — atre)’| ) = 2Gs - & + 6Ka(t, — atre)tré.
y Ty ’

Because of

1 18K o
—S-S+
))y Ty

(1, — atre)’ > 0,

we have
f=0= Gs-é+3Ku(t, —atre)tré > 0 <= 1 >0, (16)
from which the following statement can be deduced:
{f =0 and Gs-é+ 3Ku(t, — atra)tré > 0} = 4 > 0. (17)
On the other hand, if 4 > 0, Eq. (6) ensures f = 0, which together with Eq. (16) lead to
2>0={f=0and Gs-é+ 3Ka(t, — atre)tré > 0}. (18)

From Egs. (17) and (18) we thus conclude that the yield condition f =0 and the straining condition
Gs - € + 3Ka(t, — atre)tré > 0 are sufficient and necessary for plastic irreversibility 4 > 0. Considering this
and the inequality (5), we thus reveal the following criteria for plastic irreversibility:

i 7,[Gs - € + 3Ku(t, — atro)tré]

3 >0 if f=0 and Gs-é+3Kua(t, —atro)tré > 0, (19)
R(t, — atro)
2=0 if f<0 or Gs-é+3Ka(t, —atre)tré <0, (20)
where
R:= G+ 9K’ (1)

is a material constant. )

~ According to the complementary trios (4)(6), there are just two phases: (i) 4> 0 and f = 0, and (ii)
A =0and f <0. From the criterion (19) it is clear that (i) corresponds to the plastic phase (or called the on-
phase, or the elastoplastic phase) while (ii) to the elastic phase (or called the off-phase). During the plastic
phase, 4 > 0, the mechanism of plasticity is on, the mechanical process is irreversible, and the material
exhibits elastoplastic behavior, while in the elastic phase, 4 = 0, the mechanism of plasticity is off, the
mechanical process is reversible, and the material responds elastically. Thus Egs. (19) and (20) are called the
on—off switching criteria for the on—off switch of the mechanism of plasticity. Substituting Eq. (19) for A
into Egs. (12) and (13) results in a coupled highly non-linear differential equations system for tre and s.
In the following we are going to reduce these non-linearities through a group-theoretic approach.

4. An eight-dimensional Lie algebra representation

In this section and the next one we will manage to put the constitutive model in such a form as to reveal
internal symmetry. We first rearrange Eq. (12) into

d Y A (n—-1)Gx__.
& [exp(—apl) (1, — atre)] + /—y [exp(—apd)(z, — atre)] = mtrs, (22)
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where

3(1 — n)o?
P /) et (23)
ny,
i1s a material constant, and

1-2
n::TV, 0<n <1, (24)

is called the index of compressibility. Through the above arrangement Eqgs. (22) and (13) thus possess the
same integrating factor X° defined by

X0 = exp . (25)
Ty
Then, by noting that
exp(ap?) = (X°)", (26)
where
3(1 =)o +
by := ayy, = w, (27)
n
Eq. (22) can be written as
d 1= (n—1)Go .
& [(XO) O(Ty — OCtrO')] = Wtrﬁ. (28)
Simultaneously, Eq. (13) changes to
%(XOS) =2GX"%. (29)
Let us introduce
_ o .
V2
X = {XO} === 5 (30)
X X T, BE
X0 2
(X0 (z, — atre)
L Ty i

The yield condition
1
fzzs's— (t, — atra)’ =0
thus can be expressed as

TN T2 (xO2 (X7 = 0.
o | 2 - )
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Since 7, > 0, the above equation can be rearranged to

1 | & .
Gy | Y - @A - @y =
i=1
In terms of g defined by

16 O6><1 06x1

. 2by
g:—2 01><6 —(XO) 0 s (31)
(XO) 01><6 0 -1
we obtain
XTgX = —1. (32)

It is an equivalent form of the Drucker—Prager yield condition in the space of X. The space endows such a
metric tensor g with signature (6,2) is known as a pseudo-Riemann manifold, which is locally a pseudo-
Euclidean space denoted by [Ei,z; and the above equation signifies a pseudo-sphere in such a space. The
above superscript T denotes the transpose.

Furthermore, Egs. (29) and (28) together become

d~ ~
_Xx — As 0 33
dr X (33)
where
O TR R A | R 34
0 ))_ V2 V2 V2 23 13 12 2’7(X0)b0 . ( )
)
In view of Egs. (19) and (32) the on—off switching criteria become
X0=A%" if X"gX=—1 and A’X’>0, (35)
X'=0 if XTgX < -1 or A’X°<0, (36)
in which
< 2 o em em . . —axO .
)= i H B A en én en Wtrs}, (37)
_ R voyen-2) 57y
F = (X0) (X7)" (38)

Note that Xf) is a seven-dimensional column vector; conversely, K? is a seven-dimensional row vector.
Organizing Eqgs. (33), (35) and (36) we have

d~ ~~
—X = AX
- 7 (39)
where
A=Y Aol TER = 1 and AKX >0, (40)
A

A— [gm Af)} if XTgX < —1 or A’X*<0. (41)
1x7
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Eq. (39) is an eight-dimensional Lie algebra representation of the constitutive model (1)-(6). Because it is
easy to check that

trA =0, (42)

A in the plastic phase is a Lie algebra of s/ (6,2, R), which depends on X, and thus Eq. (39) is not a linear
system.

5. A seven-dimensional Lie algebra representation

Due to the vanishing traces of the deviatoric tensors s and ¢, the third components in Egs. (30) and (39)
can be obtained from the first two components:

33 11 22 : : :
ST =5 —5, €33 = —e€11 — €. (43)

To delete this redundancy, let us introduce

Pl [ ais' + as??
235" + ags?
. 50 23
X = - -4 §13 , 44
i =% (44)
b
X (X (x, — atro)
L X° ] L Ty i
where
. T . T
a; := sin (0 +§), a, :=sinf, a;:=cos (0 + 3)’ as := cos 0, (45)

with 0 being any real number. The on—off switching criteria turn out to be

X0 =AX* if X'gX=-1 and A’X' >0, (46)
X'=0 if X'gX< -1 or AJX°<O, (47)
where
1 IS 05312]70 05><1
g:= 0y 812 —()i)) _01 ; (48)

0
I )

2 w(X0Y%0 .
TR [aléll +aeyn azen +asen exn e en _(17,,);51)(0) “tré | (49)
Y
in which the factor F, becomes
R 04\ (2b9—2) 6\2
B = = (x0) D (o2, (50)

G
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Thus, Eq. (39) is reduced to

X = AX, (51
where
_ 06><6 A(Y) : T _ Oyrs
A=170 ) if X'gX=-1 and AX’ >0, (52)
1 06xe Ay | e T Os
A= if X'gX<—-1 or AX KO, (53)
01><6 0 s
in which
A} [aién + arén |
A; azéey + asén
s |4y 2 ex
Ao = A5y, e ' (54)
A ( 7]é)12
Ag L 217”2X0)h0 tré

Consequently, the underlying space of the Drucker-Prager model in the plastic phase is the following
pseudo-sphere:

X'gX = 1. (55)
The space endows such a metric g with signature (5,2) and dependent on the temporal component X as
shown in Eq. (48) is known as a pseudo-Riemann manifold, which is locally a pseudo-Euclidean space
denoted by [E;z. This is similar to the pseudo-Riemann spacetime structure for the mixed-hardening elas-
toplasticity as discussed by Liu (2003).

Note that Eq. (51) is a (5+2)-dimensional Lie algebra representation of the constitutive model (1)—(7), in
which X and A are the augmented stress vector and the control tensor, respectively. The control tensor
A organizes the input information of the strain rate tensor &, and also depends on X. Thus we obtain a
Lie type equation

X = A(X,0X, (56)
where the A of plastic phase satisfying
trA=0 (57)

is a Lie algebra of s/(5,2, R).

6. PSL(5,2,R) symmetry in the plastic phase
Due to Eq. (51) we assert that the symmetry group of this model in the plastic phase is a one-parameter
subgroup G(¢) satisfying the following Lie type equation (see, e.g., Liu, 2001b):
G(1) = A(G(1),))G(0), (58)
G(0) =IL. (59)

Thus the solution of Eq. (51) may be expressed in the following formula for the transition from the aug-
mented stress X(#;) at time # to the augmented stress X(z) at time #:

X(1) = [6()G™ ()X (1) (60)
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From Egs. (5), (25) and (44) it follows that
X0 > X°(0) > X00), Vsl >0, (61)

which is applicable to both the on and off phases.

In the remainder of this section we concentrate on the plastic phase to bring out internal symmetry
inherent in the model in the plastic phase. Denote by /,, an open, maximal, continuous time interval during
which the mechanism of plasticity is on exclusively. From Eq. (52) it is easy to verify that the control tensor
A in the plastic phase satisfies Eq. (57). Hence, the corresponding transformation G satisfies

detG =1, (62)

G) > 1. (63)

Thereby the on-phase control tensor A is an element of the real Lie algebra s/(5,2, R) and generates
the on-phase transformation G, which is thus an element of the special orthochronous pseudo-linear
group SL(5,2, R).

From Eq. (46), X° > 0 strictly when the mechanism of plasticity is on; hence,

X)) > X)), Yt>t, t,ty €L, (64)

which means that in the sense of irreversibility there exists a future-pointing time-orientation from the
augmented stress X(¢,) to X(¢z). Compare Eqgs. (64) and (61). Moreover, such time-orientation is a causal
one, because the augmented stress transition formula (60) and inequality (64) establish a causality relation
between the two augmented stresses X(#;) and X(¢) in the sense that the preceding augmented stress X(#;)
influences the following augmented stress X(¢) according to formula (60). Accordingly, the augmented
stress X(#,) chronologically and causally precedes the augmented stress X(¢). This is indeed a common
property for all models with inherent symmetry of the orthochronous group. By this symmetry a core
connection among irreversibility, the time arrow of evolution, and causality has thus been established for
plasticity in the plastic phase.
From Eq. (44) it follows that

Sl 0

2 a —a

S 4 : 02><3 02x1 0

s23 B —a;3 a 27;)7 X* 0 65
sB T 05 BLy 05 V3X0 Tlol (65)

by
52 (U1 0,3 _ﬁg“) : 9
tro -

and one can determine the stress tensor o(#) once the augmented stress vector X(¢) is calculated. This is
indeed a projective realization of the response. By this and the on-phase transition (60) one can map o(#) to
the current response o (¢).

7. T(6) symmetry in the off-phase

Contrary to Eq. (60) of the plastic phase, the transition for the off phase is very simple. To find it, recall
that Egs. (58)—(60) are still applicable but with

G(t) = Hiﬁ TY) ] , (66)

where T is of order 6x 1 and governed by

T =A),
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in which Aj is given in Eq. (54) with X° fixed. Thus it is easy to show that T € 7(6), and G € T(7);
therefore, the constitutive law in the off-phase has an internal symmetry characterized by the translation
group T(6).

The inverse of Eq. (66) is given by

o [1 -T
G'= o 1]. (67)

Thus according to Eq. (60) we obtain

R, ™[]

which is valid for the off-phase. In a similar way the stress response in the off-phase can be realized by
invoking Eq. (65) and the off-phase transition formula (68).

In summary the stress response is the projective realization (65) of the on-phase transition formula (60)
or the off-phase transition formula (68); switching between the two depends upon the control tensor A
and obeys the on—off switching criteria (46) and (47). The switching from a transformation of the special
orthochronous pseudo-linear group in the plastic phase to a translation transformation in the off-phase
indicates that internal symmetry switches from one kind to another, and vice versa. As a result the
constitutive model in the stress space of ¢ has symmetry switching between the translation group 7(6)
acting on the admissible stresses in the interior of the cone as shown in Egs. (4) and (7) as well as in
Fig. 1, and the projective special orthochronous pseudo-linear group PSL(5,2,R) acting on the yield
hyper-surface.

8. Numerical method based on one-integrating factor formulation

For calculation purpose we may approximate the specified controlled-strain path by many rectilinear
strain paths, such that & at each time step is constant, denoting by &(¢) at a discrete time ¢ = #,. We first
consider elastic phase. Under specified strain path &¢) and initial stress a(¢) the elastic response can be
obtained by

s(t) =s() + 2G(t — t,)e(¥), (69)
tra(t) = tra(€) + 3K (¢ — #,)tré(f). (70)

The end time of elastic phase denoted by ¢#,, can be determined according to the criterion (19) as follows.
First solve for ¢ the following algebraic equation

[(0) + (£ — 1)6(0)] - [s(£) + (1 — 1,)e(0)] — 2[t, — atra(€) — 3Ka(t — t,)tré(0)] = 0, (71)

which has been obtained by substituting the elastic equations (69) and (70) into the yield condition
s-s—2(t, —atre)’ = 0. However, the solution ¢ of Eq. (71) must satisfy Gs(r)-é(f) + 3Ka[t,—
otra()]tr&(€) > 0 in order to be a switch-on time #,,. If there exist no solutions to Eq. (71) or the solution ¢
to Eq. (71) does not satisfy Gs(¢) - €(¢) + 3K o[z, — atre(z)]tr&(¢) > 0, then the strain path will not switch on
the plastic mechanism.

From Eq. (71) we obtain a quadratic equation for ¢ — ¢,

A(t—1,) +B(t—1,)+C =0,
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where
A :=4G%(0) - e(0) — 18K [tr& ()],
B :=4Gs({) - ¢(¢) + 12Ko[t, — atra(£)]tr&(¢),
C:=s(l) -s(t) — 2[z, — atra (V).

Thus, we have

—B++VB?—-44C
foy =t + 21 - . (72)

The evolutions of elastic equations are rather simple, and we below turn our attention to the numerical
solutions of plastic equations. The numerical scheme would provide a medium to calculate the value of X at
time ¢ = ¢,,; when knowing X at time ¢ = ¢#,. The evolution of X is governed by the dynamical law (51) with
matrix A given by Eq. (52). Due to the piecewise linearity of controlled strain, ¢ is constant in each time
increment equal to Az. Unluckily, due to the presence of X° and X° in Eqgs. (49) and (54), this is not true for
matrix A. Therefore we approximate the solution of the dynamical law (51) by considering X° and X°
constant in each single time step. Under such an additional hypothesis, the matrix A is constant, and so the
numerical solution of Eq. (51) is found to be

X(+1) = G(OX(D), (73)

where

AV(D)AS(0)

z 0
o () o

(74)

Is + ol AS(DAY(0) ——2—AS(0)
G(0) := exp[AtA(0)] = [ AV(OA () |

in which

z) := cosh (At\/AS(Z)Af)(E)), z; := sinh (At\/AS(Z)AB(E)). (75)

In order to increase the accuracy we can adopt a second order group preserving scheme, which replaces
G(¢) in Eq. (73) by

I+ ia = A (DAY (0) ——2—A}(C
G(Z) = eXp[AtA(é_)] _ 6 +A9(6)Af)(l) 0(0 )_ s(0) AV DA (D) o(0) ’
WA: (f) Z]

where ¢ denotes the value at time ¢, + Az/2 and

z, := cosh (Ar, /A?(Z)A;(Z)), 2z, := sinh (Am /AS(Z)A‘(")(Z)). (77)

The value of X at time # + A¢/2 which appeared in A’ and Aj is calculated by

(76)

X(¢) = exp [%A(ﬂ)} X(9), (78)
and then X(¢ + 1) is calculated by
X(¢+1) = G(O)X(¥) (79)

with G(¢) from Eq. (76).
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To match the consistency condition exactly, we impose the condition (55) on the numerical solutions
of X(¢ + 1), which by Eq. (48) leads to

wea - (Zaeres ) (80)
(Xo(0 + 1)) ’

where X'(¢+1),...,X°(¢+ 1) are calculated by Eq. (79). Substituting X'(¢+1),..., X%+ 1) and
X°(¢+1) into Eq. (65) we obtain s(¢ + 1) and tra(¢ + 1) at the current step.

Now, let us apply the above scheme to a certain example. The material constants used in the calcu-
lations were G = 3000 psi ~ 20.67 MPa, ¢ = 30 psi = 206.7 kPa, ¢ = 40° and v = 0.3, and thus 7, = 21.55
psi ~ 148.48 kPa and a =~ 0.2. Fig. 2 displays the stress strain curves under cyclically increasing ampli-
tudes of deviatoric strains and a constant volumetric strain increment. The volumetric stress as shown in
Fig. 2(f) is tending to large negative value due to dilatancy. It should note that the increasing of devi-
atoric stresses is not due to the hardening effect (which we not consider here) but is due to the dilatancy
of volumetric strain.

In Fig. 3 we show the consistency error defined by s -s/2 — (1, — atr 6)’. When this quantity is zero for
all plastic loading time we obtain a consistent scheme which preserves the consistency condition. As shown
in Fig. 3 the consistency error by the one-integrating factor scheme is zero.
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Fig. 2. The responses of the Drucker—Prager model under cyclically increasing amplitudes of deviatoric strains and a constant vol-
umetric strain increment.
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5 -

Runge-Kutta scheme

Consistency error
N

one-integrating factor scheme Newton-Raphson scheme
4 two-integrating factors scheme

0 20 40 60 80 100
t (sec)

Fig. 3. The errors of consistency for different numerical schemes.

9. Numerical method based on two-integrating factors formulation

Now we turn our attention to a direct numerical solution of Egs. (12) and (13). In terms of the inte-
grating factor X° defined by Eq. (25), Eq. (13) can be written as

%(Xos) =2GX%. (81)
Let a(f) > 0 and b(¢) > 0 be unknown functions, such that
2 =s-s, b= (1, —atre)’, a*—b =0, (82)

the last of which is due to the yield condition. Taking the inner product of Eq. (81) with s and noting
s-s =2a* and s - § = 2aa, we obtain

%( X%) = Gx%a s - é. (83)
As before, we let
X! ais'! + ays??
. a3S“ + a4s22
X* X? 523
Xa: |:X8:| = |:aXL'10:| = :XO S13 (84)
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be an augmented six-dimensional stress vector, and from Egs. (81) and (83) it follows that
X, = AX,, (85)
where

aiéy + axexn
s 3é11 + asen
o 05><5 Aa s . —1 @en .
Aa = |:(AZ)T 0 :|7 Aa :=2Ga ?23 . (86)
€13
e
Similarly, define another integrating factor by

_ 2)
xO = exp ( 9Ko ;> _ (XO)*9K0<2/G’ (87)

Ty

and thus Eq. (12) can be written as
o (t, — otre)] = —3Koxtré. (88)
Taking the product of Eq. (88) with 7, —atre and noting that (1, — atre)d(t, — atre)/df = bb and
(1, — atre)’ = b* by Eq. (82),, we obtain
d

& (bx") = —3Kax"b ! (1, — atro)tré. (89)

Let
x5, — atre)

oom 4] = [ 0] o0
From Egs. (88) and (89) we obtain

Xy = AyX, (91)
where

0 —3Kab 'tre
As = {—SKocbltré 0 } (92)

In above derivations we split the yield condition as shown by Eq. (82); into two “‘sub-yield”” conditions
as shown by Eqgs. (82); and (82),, respectively. The former after multiplying by (X 0)2 on both sides can be
written as, in terms of X, defined by Eq. (84),

XTgX, = %I - (0 = 0O | 518l - | <o, (93)
where

| I 05

2o, 7] (94)

is an indefinite metric tensor of the six-dimensional Minkowski spacetime M>"'. Eq. (93) corresponds to a
cone in the space of X, in M*>*!. Since A, in the dynamical law (85) satisfying

Alg, +g,A, =0 ©9)
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is an (5+1)-dimensional Lie algebra of the proper orthochronous Lorentz group SO,(5,1), G, generated
from Eq. (85) satisfies the following group properties:

G'g,G, =g, detG,=1, (G, =1, (96)

where (G,) denotes the zeroth component of G,.
Correspondingly, Eq. (82), after multiplying by (xo)2 on both sides can be written as, in terms of X,
defined by Eq. (90),

Xy, Xs = [X;]° = () = &")’[(z, — atra)® — ] = 0, 97)
where
1 0
g = |:0 _1:| (98)
Eq. (97) corresponds to a cone in the space of X, in M'*". Since A, in the dynamical law (91) satisfying
Angb +g,A, =0 (99)

is an (1+1)-dimensional Lie algebra of the proper orthochronous Lorentz group SO,(1,1), G, generated
from Eq. (91) satisfies the following group properties:

G g,G, =g, detG,=1, (G))=>1. (100)

From a geometric view, the underlying space of X, and X, which governed respectively by Egs. (85) and
(91) together with the two cone conditions (93) and (97) is a direct product of M>"!' @ M'*! as shown in
Fig. 4. The internal symmetry group of the above two integrating factors system is SO,(5,1) ® SO,(1,1).

For calculation purpose we now derive a numerical scheme based on the two integrating factors for-
mulation. The numerical scheme would provide a medium to calculate the values of X, and X, at time
t = ty,; when knowing X, and X, at time ¢ = ¢,.

The evolution of X, is governed by the dynamical law (85) with matrix A, given by Eq. (86). Due to the
piecewise linearity of controlled strain, € is constant in each time increment equal to As. Unluckily, due to
the presence of a(¢) in Eq. (86), this is not true for matrix A,. Therefore we approximate the solution of the
dynamical law (85) by considering a constant in each single time step. Under such an additional hypothesis,
the matrix A, is constant, and so the numerical solution of Eq. (85) is known to be

X, (£ +1) = Gu(0)X, (0), (101)

X:: x0

f———— X} X,

Fig. 4. The Drucker—Prager yield cone is extended to a twin-cone in the product space of M**' @ M'*!. Tt is the construction of the
twin-cone in Minkowski spacetimes of X, and X, that signifies a conceptual breakthrough.
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where
(z3=1) A s\T 24 A5(0)
Is + A;(;)Aj,(() AL (O)(A) (0) TROAD
G,(0) == exp[AtA,(0)] = AT (0 , (102)
A OALD) =
in which

23 := cosh (At, JA: () -A;(e)), 24 := sinh (A;, JAS(0) .Ag(z)). (103)

A similar argument applied to the dynamical law (91) with matrix A, given by Eq. (92) leads to
Xy (£+ 1) = Gp(0)Xp(0), (104)
where

cosh(=3Kab ' (£)tré(¢)At) sinh(—3Kab~!(£)tre(f)Ar)

sinh(—3Kob~! ()tr&()Ar)  cosh(—3Kab~'(0)tré(0)Ar) | (105)

Gy (€) := exp[AtA,(€)] = [

However, in their current forms Egs. (101) and (104) insuffice to determine the values of s(¢ 4 1) and
tre(¢+ 1), since from Egs. (84) and (90) we have

s +1)
s2(0+1) as  —ap
0, 2a(f +1
B+ = - oo F #Xj(ﬂ—l), (106)
SB(E—&-I) 0;., §I3 \/§Xa(€+1)
s2(04+1)
1 X e+1)

and there are still two unknowns a(¢ + 1) and (¢ + 1) on the right-hand sides. For this problem we need
four equations:

X0+ Da(b+1) = X°(C+1), (108)
X+ Db +1) =X (0+ 1), (109)
P+ 1) =P +1) =0, (110)
O+ 1) — (XO(0+ 1)K =0, (111)

to solve four unknowns a(¢ + 1), b(¢ + 1), X°(¢ + 1) and x°(¢ + 1). In above the values on right-hand sides
are all known. Eq. (108) is obtained from the last row in Eq. (84); Eq. (109) is obtained from the last row in
Eq. (90); Eq. (110) is a direct result of Eq. (82);; and Eq. (111) is obtained from Eq. (87). Through some
algebraic manipulations we obtain the solution of X°(¢ + 1) by

XL+ 1)\
XP(0+1) ’
and a(f + 1) can be calculated by Eq. (108). Then x°(¢ + 1) is calculated by Eq. (111), and b(¢ + 1) can be

obtained from Eq. (109). Substituting a(¢+ 1) and b(£+ 1) into Egs. (106) and (107) we thus obtain
s({+1) and tre(£+ 1).

X(+1) = ( (112)
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Especially, we have forcing the consistency condition by Eq. (110), and so the new scheme not only
preserves the cone conditions

XJ(0+Dg X (0+1)=0, X;(¢{+1)gX,(¢(+1)=0, (113)
but also the consistency condition

1

5Hs(£+1)|\2— [t, — atra (€ + 1)]> = 0. (114)

The equality in Eq. (114) says nothing but for every time increment the stress point a(¢ + 1) is located on the
yield hyper-surface. In other words, the consistency condition is fulfilled exactly for every time step in the on-
phase. Therefore, the new numerical scheme may be specifically called a consistent scheme. This explains
why this scheme provides a zero error of the consistency condition as shown in Fig. 3.

10. Runge—Kutta scheme based on integral constitutive solution

In terms of
Ly (115)
Ty

Egs. (12) and (13) can be written as

tré = 3Ktré — 9KaA, (116)

S:ZGéfGiAs. (117)

T, —atre

The integrals of the above two equations are

tro(t) = tra(t) + 3KAtre — 9Ka[A (1) — A(7)], (118)

1 t
st)zi{YA ))s(z +/ 2GY (A é(é)dé}, (119
()= gy | A + | 267(4(9) )
where Atre is a constant volumetric strain increment at each time step increment Az = ¢ — 7, and Y is defined
by
CIe: co + 9K a2 A\ K
Y(A):= —dp| = —— 120
w=ee| [ ] = (R) 0

where p is a dummy variable to denote A, and

o =1, — atra(t) — 3KaAtre — 9K o A(7) (121)
is a constant.

From Eq. (7) at the yield state we have

1

388 = (1, — atre)’, (122)

1

38 $ = —a(t, — atro)tré. (123)
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Inserting Eq. (116) for tré and Eq. (117) for s into Eq. (123) and considering Eq. (122), we obtain

(1, — atr6)(RA — 3Katr) = Gs - &, (124)
where R was defined by Eq. (21). Taking the time derivative of Eq. (124) while keeping ¢ and tré to be
constant, inserting Eqgs. (116) and (117) and then combining with Eq. (124) again, yield

(co + 9Ko>A)RA — 6KoRtréA + R2A> = 2G2|é|)* — 9K (tré)”. (125)

The above is a second order autonomous differential equation for A. Any desired degree of accuracy can
be achieved by employing high-order Runge—Kutta methods to integrate Eq. (125). In the calculations
presented in Fig. 3 the above equation was integrated by a fourth-order Runge-Kutta method, which
together with the discretization of Eq. (119) by the trapezoidal rule

s(t) = ))/’((ill((j)))) s(t) + GAt{l + fl((ig))))}e(r), (126)

and Eq. (118) provide a numerical method to calculate the stress. We call it the Runge-Kutta scheme.
The result of consistency error is shown in Fig. 3, the values of which may be large to 5 (psi)’.

In order to enhance the accuracy of consistency we may substitute Eqgs. (118) and (126) into the yield
condition (122) to obtain a non-linear algebraic equation for A:

Y2 (A(0))s(7) - s(t) + 2GAs(7) - (1) Y (A(2))[Y (A(1)) + Y (A(x))] + (GA)|[é(0) [ ¥ (A(2))
+ Y (A@)] = 2[eo + 9K A()] Y2 (A(r))
=0. (127)

Solving this equation by the Newton—Raphson method with error tolerance 1078, and using Eqgs. (118) and
(126) to calculate the stress, the result of consistency error is shown in Fig. 3 marked by the Newton—
Raphson scheme, which largely improves the accuracy to the order of 107!, As compared to the consistent
schemes developed in Sections 8 and 9, this scheme spends much time on the iterative solution of the above
equation. As compared with the Runge—Kutta scheme the errors of the above three schemes are almost zero
as shown in Fig. 3.

Because the one-integrating factor scheme and the two-integrating factors scheme automatically match
the consistency condition without any iteration, they can save about 90% or more CPU time than the
backward Euler integration scheme (Simo and Hughes, 1998). For example, the computational time of
the new schemes spent in the computation of the above numerical example in Fig. 2 is about 0.2 s, but the
backward Euler integration scheme requires 2 s.

11. Conclusions

In this paper we have investigated the internal symmetry inherent in a constitutive model of Drucker—
Prager type. Even though the constitutive equations are highly non-linear in the stress space of o, they can
be converted to a Lie type system X = AX in the seven-dimensional augmented stress space of X. In the
augmented stress space an internal spacetime structure of the pseudo-Riemannian type is brought out. The
control tensor A for the plastic phase was proved to be an element of the real Lie algebra s/(5,2, R) of
the special orthochronous pseudo-linear group SL(5,2,R), and the one-parameter subgroup G of the
system G = AG with the on-phase A was shown to be an element of the special orthochronous pseudo-
linear group, so that the causality relation of the augmented stresses was verified. To account for both the
on and off phases we constructed a composite space endowed with a pseudo-Riemann metric with signature
(5,2) on the pseudo-sphere but with a pseudo-Euclidean metric having signature (5,1) on each of the interior
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of the cones inside the pseudo-sphere. As a result we found that the Drucker—Prager elastoplastic model
possesses two kinds of symmetry—7(6) in the off-phase and PSL(5,2,R) in the plastic phase—and has
symmetry switching between the two depending on the control input.

In addition that we also proposed a two-integrating factors formulation of the Drucker—Prager con-
stitutive equations, which splits the yield criterion into two sub-yield functions in deviatoric and volumetric
stress spaces. Then, two Lie type differential equations X, = A,X, and X, = A,X,, were constructed. The
augmented states X, and X, satisfy the cone conditions in spaces M>*' and M'*!| respectively. The Lie
algebras are the direct sum of so(5,1) ©so(1,1) and the corresponding Lie symmetries are
S0,(5,1) ® SO,(1,1).

Based on these symmetry studies, numerical schemes which preserve the group properties for every time
increment were developed. These group preserving schemes may be specifically called consistent schemes,
since they are capable, among other benefits derivable from the group properties, of updating the stress
point to be automatically located on the yield surface at the end of each time increment in the plastic phase
without any iterative calculations, that is, the consistency condition is fulfilled automatically and exactly.
In this regard, the conventional numerical schemes typically do not share the group properties so that
perform less accurate than the consistent schemes.
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